Undergraduate

A course that is designed to provide basic skills in arithmetic, algebra, and geometry. Whole numbers, fractions, decimals, percentage problems, beginning algebra, formulas and measurement. The class meets five times a week. May not be used for core curriculum requirements. Grade: Pass/Fail.

Undergraduate

How to use graphing calculators or computer programs to explore mathematics topics.

Undergraduate

In this course special attention is given to the nature of mathematics as well as to the structure and properties of the real number system. Topics include logical reasoning, problem solving, the real number system and its subsystems: natural numbers, integers, and rational numbers.

Undergraduate

A course that treats beginning and intermediate topics in algebra including quadratic equations and systems of linear equations. Prerequisite: one unit of high school algebra.

Undergraduate

Linear and quadratic equations, graphs of relations and functions, systems of equations, polynomial functions, logarithmic and exponential functions. Prerequisite: Two units of high school algebra or MAT 121.

Undergraduate

Trigonometric functions, applications, trigonometric identities and equations, graphs, inverse trigonometric functions, and triangle solution. Prerequisite: Two units of high school algebra or MAT 121 or MAT 131.

Undergraduate

A modified study of polynomial, rational, exponential, logarithmic, trigonometric, and two-variable functions. Emphasis is on analyzing and graphing these functions using analytic methods as well as with the use of graphing calculators. Prerequisite: Two units of high school algebra and one unit of geometry or MAT 131 or permission of the instructor.

Undergraduate

Topics will include limits, derivatives and applications of derivatives. Prerequisite: MAT 150.

Undergraduate

Topics will include the definite integral, analytic geometry, and transcendental functions. Prerequisite: MAT 151 (trigonometry required as a prerequisite or corequisite).

Undergraduate

A sophomore level course, primarily for mathematics majors or minors but open to all students. Sample topics: computer algebra systems, problem-solving, properties and graphs of functions.

Undergraduate

Twenty hours of supervised field experience in public school including tutoring, small group instruction, grading, and other assessment activities as deemed appropriate by the classroom teacher.

Undergraduate

Topics will include applications of integration, indeterminate forms, improper integrals, and infinite series. Prerequisite: MAT 152.

Undergraduate

Topics include vectors, analytic geometry in three dimensions, partial derivatives, and multiple integrals. Prerequisite: MAT 251.

Undergraduate

MAT 220 CHANGED TO MAT 2700 BY DR. GARRY BRELAND ON 11/2/2011 Frequency distributions, central tendency, dispersion, normal distribution, and sampling. Prerequisite: MAT 131.

Undergraduate

A junior level course for mathematics majors or minors. Sample topics: famous theorems, readings in mathematics, complex numbers.

Undergraduate

Twenty hours of supervised field experience in public school including tutoring, small group instruction, grading, and other assessment activities as deemed appropriate by the classroom teacher.

Undergraduate

Topics will include basic concepts of geometry, measurement, probability, and statistics, with an emphasis on reasoning, problem solving, and communication of mathematical ideas. Prerequisite: MAT 116 or permission of the instructor.

Undergraduate

Logic, sets, relations, functions, denumerable sets, cardinal numbers, and ordered sets, with emphasis throughout on the nature and technique of mathematical proof. Prerequisite: MAT 152 and consent of instructor.

Undergraduate

An introduction to probability with some statistical applications. Equally likely events, finite sample spaces, and random variables. Prerequisite: MAT 152.

Undergraduate

A study of statistical theory and applications with emphasis on inferential statistics. Topics include confidence intervals, hypothesis testing, correlation and regression, analysis of variance, and other topics. Prerequisite: MAT 152.

Undergraduate

Topics will include sets, mathematical induction, relations and functions, algorithms, difference equations, graphs, combinatorics, and Boolean algebra. Prerequisite: MAT 152.

Undergraduate

A first course in linear algebra. Systems of linear equations, matrices, determinants, vector inner product, vector cross product, and applications of linear algebra, with an introduction to vector spaces and linear transformations. Prerequisite: MAT 131 or MAT 150.

Undergraduate

A continuation of MAT 341. An in-depth study of linear algebra topics and applications with emphasis on vector spaces, inner product spaces, linear transformations, eigenvectors, eigenvalues, and an introduction to numerical methods. Prerequisite: MAT 341.

Undergraduate

The study of methods and problems related to teaching mathematics in secondary school.

Undergraduate

A first course in differential equations. Differential equations of the first order, applications, linear differential equations and series methods. Prerequisite: MAT 252.

Undergraduate

THIS COURSE WAS CHANGED FROM MATHEMATICS SEMINAR IV TO SENIOR SEMINAR I IN SPRING 2009. A capstone course for mathematics majors. A comprehensive overview of the mathematics curriculum with emphasis on a thorough knowledge of key concepts and an exploration of relationships between topics.

Undergraduate

Twenty hours of supervised field experience in public school including tutoring, small group instruction, grading, and other assessment activities as deemed appropriate by the classroom teacher.

Undergraduate

Euclidean and non-Euclidean geometries with emphasis given to their logical development from basic assumptions. Prerequisite: MAT 151, and trigonometry, or permission of instructor.

Undergraduate

The algebraic structure of the rational, real, and complex numbers. Prerequisite: MAT 335 or permission of instructor.

Undergraduate

An intensive and detailed study of continuous and differentiable functions. Prerequisite: MAT 252. Offered on demand.

Undergraduate

The origins, philosophy, and chronological development of the mathematical sciences with emphasis on mathematical concepts and their interrelations. Prerequisite: MAT 252 or permission of instructor.

Undergraduate

A study of Euclidean and non-Euclidean geometries, with emphasis on their logical development from basic assumptions.

Undergraduate

A course on basic algebraic structures such as groups, rings, and fields. Attention is given to formal algebraic properties of familiar objects, such as the rational, real, and complex numbers.

Undergraduate

An intensive study of limits, continuity, differentiation, and integration, in an arbitrary number of dimensions.

Undergraduate

A basic course in differential equations including first order equations, linear equations, and series methods. Graphical techniques, and the use of symbolic software, are also developed.

Master's

A detailed study of the capabilities of multi-platform mathematics software on devices such as graphing calculators, emphasizing their uses in computation, visualization, and symbolic manipulation. A variety of mathematical explorations, keyed to both the Mississippi Mathematics Framework and CUPM recommendations for the training of teachers of mathematics, are used to develop proficiency with each calculator feature.

Master's

Master's

A companion course to MAT 603 and MAT 613, emphasizing the use of computer algebra systems (CAS) to aid the mathematical learning process, and to perform specific computations and solve specific problems.

Master's

Logic, sets, relations, functions, denumerable sets, cardinal numbers, and ordered sets, with emphasis throughout on the nature and techniques of mathematical proof.

Master's

An intensive study of algebra with emphasis on the relationship of algebra to other areas of mathematics.

Master's

A detailed study of topics and applications in linear algebra, with an emphasis on vector spaces, inner product spaces, linear transformations, eigenvectors, eigenvalues, and numerical methods.

Master's

An intensive study of analysis with an emphasis on application.

Master's

An intensive study of selected topics in geometry.

Master's

Master's

A study of current trends and issues in the teaching of mathematics in the secondary school. Special emphasis will be given to problems involving curricula and methods of instruction.

Master's

Master's

Master's

Master's

Master's